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Two-Dimensional Random-Random Walks: 
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This paper presents a study of the dynamics of a particle undergoing a directed 
random walk in a two-dimensional disordered square lattice. We derive the 
asymptotical behaviors of the coordinate and of the mean square displacement. 
All the dynamical exponents are calculated both in the normal and the 
anomalous regimes. It is shown that, as contrasted to the one-dimensional case, 
the so-called quenched and annealed diffusion "constants" indeed coincide. 

KEY WORDS:  Fluctuation phenomena; random processes and Brownian 
motion. 

1. I N T R O D U C T I O N  

Random-random walk generally designates Brownian motion of a "par- 
ticle" in a medium having a feature which varies randomly from one point 
to another. The term medium is to be taken in a wide sense: it can be the 
ordinary physical space, or any other parameter space such as an energy 
space, for instance. ~ In this latter case, the walk pictures the motion of a 
system from one energy state to another. On a general level, Brownian 
motion in the viscous limit can be captured by an ordinary master 
equation giving the time evolution of the probabilities to have a definite 
value for some dynamical parameter (coordinate, population of a given 
species,... ). 

1Groupe de Physique des Solides, Laboratoire associ6 au CNRS (UA no. 17) et aux 
Universit6s Paris VII et Paris VI, 75251 Paris Cedex 05, France. 

2 Laboratoire de Physique Statistique, Coll6ge de France, 75231 Paris Cedex 05, France. 
Also at Universit6 Paris VII, 75251 Paris Cedex 05, France. 

673 

0022-4715/91/1100-0673506.50/0 �9 199l Plenum Publishing Corporation 



674 Aslangul et  al. 

In what follows, for definiteness, we shall use the picture of a particle 
moving on a lattice. In such a case, the main relevant dynamical 
parameters are the position of the particle and its mean-square displace- 
ment; these quantities are found by achieving the proper averages over the 
probability distribution as given by the master equation and, when 
required, over all the disorder configurations. Overbarring will denote an 
expectation value with respect to the probabilities, while brackets ( . . - )  
mean a disorder average. 

In one dimension (d=  1), the symmetric walk, in which forward and 
backward jumps are given the same transition rate, was considered some 
years ago by Alexander et  al. ~2) Later, in view of discussing the transport 
properties of disordered materials, the asymmetric case was introduced, 
allowing the possibility for a drift to occur, in addition to the unavoidable 
diffusive process. It was shown by Derrida ~3) that, according to the nature 
of the disorder, anomalous dynamical behaviors can arise in the sense that, 
provided that the disorder is strong enough, the mean coordinate is not 
simply proportional to the time t, but increases slower than t, whereas the 
mean square displacement can grow either faster or slower than t. 
Generally speaking, the asymptotic dynamics is characterized by exponents 
which are simply equal to one in the standard regime, and have to be 
explicitly found in anomalous cases. It is now common to speak of 
"dynamical phases" as soon as at least one exponent is not standard. 
A detailed account of this problem was recently published. ~4) It is worth 
noting that, within the usual equivalence between dynamics at large 
times for a random walk and critical phenomena, ~4) anomalous regimes 
correspond to relevant deviations from mean-field behavior. Many 
previous treatments, especially for d >  1, have used mean-field approxima- 
tions, while others go beyond with renormalization group (RG) methods. 
Clearly, an exact treatment is of valuable interest. Such an exact solution 
is presented here for the special case of a directed walk at d~> 2. 

The general walk is indeed a very hard problem, even for d =  1, for 
which only a few results can be explicitly derived, although many insights 
can be obtained with the use of semiquantitative arguments. On the other 
hand, a simplified version of the model turns out to be fully soluble, in 
which, for each direction in space, only jumps in one way are allowed. ~5) 
This directed walk was analyzed in refs. 6 and 7 in the one-dimensional 
case; in these papers, we explicitly derived all the dynamical exponents and 
discussed various self-averaging properties of the model. The aim of the 
present paper is to show that the solution for d ~> 2 can also be found and 
to provide an exact analysis of the corresponding asymptotic dynamics. 

The directed walk is of interest p e r  se. First of all, it pictures a dynami- 
cal process in which the variable of interest can only increase, ~1) as is the 
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case, for instance, when particles are deposited on a random substrate as 
a result of a diffusive process in its vicinity; there, the dynamical variable 
of interest is the number of particles adsorbed. On the other hand, general 
physical arguments tend to show that the general both-way one-dimen- 
sional walk is, on large time and space scales, in a sense equivalent to a 
directed walk on a renormalized lattice(a's); however, no genuine algebraic 
proof is available. The status of such an equivalence for higher-dimensional 
models i s  an open question. As shown below, anomalous regimes will 
emerge in any dimension for the directed walk, although their domain of 
existence keeps reducing when d increases. On the other hand, RG methods 
establish that, for a vanishing average bias, anomalous phases are absent 
for d > 2  (see ref. 4, Section 4.3); in addition, as shown by Bricmont and 
Kupiainen, (9) ordinary diffusion occurs in the presence of a bias when d >  2 
for a wide class of weak local random perturbations. There is no contra- 
diction, in the sense that the directed walk which would correspond to a 
general walk, if an equivalence would hold, makes sense only within some 
high-field assumption, in which case standard regimes do occur in both 
models. Moreover, the dynamics in the presence of strong disorder is not 
well known for the general walk and this is also a case in which the basic 
features of each model (loops or no loops) may probably be capable of 
generating different behaviors. 

Anyway, both-way walks and directed walks essentially differ in the 
fact that in the former case the particle can visit each site an arbitrary num- 
ber of times, whereas, in the latter, a given site can be traveled through at 
most once. It can thus be expected that the throw-back of fluctuations for 
d >  1, where loops do exist, is more effective for a general walk than in a 
directed walk. 

2. B A S I C  E Q U A T I O N S  

Calling pnm(t) the probability for the particle to be at the site with 
coordinates (n, m) at time t, we have for the master equation for the 
present directed model on a rectangular lattice (see Fig. 1) 

dp.m( t ) 
dt - Wx, ._ l , .p .  1re(t)+ W. . . . . .  IP.,. ,(t) 

- ( w x ,  n,.+ Wy..m) p.m(t) (1) 

For any function f ( t ) ,  we now define its Laplace transform F(z)  in the 
usual way: 

f0 
- b  z O  

F(z) - L [ f ( t ) ]  = dt e -z~f(t) (2) 
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Fig. 1. 

(n ,m)  

~Wy~n ~m 

( n ' m ) l  ..~ 

%,o,m 
/ W y , n , m - 1  

Schematic picture of the lattice and labeling of the random transition rates. 

In all the following, the various Laplace transforms are taken with 
functions which are all bounded at infinity, so that the definition (2) is 
valid for any complex number z having a positive real part. 

By taking the Laplace transform of Eq. (1) with the initial condition 
pn, m(t = O)= 15nOISmO , one readily obtains 

2 P n m ( Z  ) - I~nO6mO = m x ,  n _ l m P n  _ lm(Z) 21- W y  . . . .  1Pnm - 1(z) 

--(Wx,.m+ Wy,.m)P~ (3) 

The transition rates W,,,m (U = X, y) are assumed to be positive inde- 
pendent random variables, all chosen in two given densities, p x(W) and 
py(W), one for each space direction; thus, the disorder average of any 
function of the W's is independent of the position in space, a fact which 
restores a translational symmetry in the mean. With the aim to investigate 
the whole range from strong to weak disorder in a simple way, and keeping 
in mind that the asymptotic dynamics at large times is essentially governed 
by the behavior of the p's near W =  0, we make the following choice: 

1 
p , ( W ) = - -  W c " W  ~" le-W/W~ ( u = x ,  y, # , > 0 )  (4) 

-r(m) 

where F is the Euler function of the first kind. 
Thus, each Pu is a gamma distribution characterized by the parameter 

#u and with the common cutoff Wc; the precise Wdependence of the cutoff 
function (here of the exponential form) is expected to have no bearing on 
the dynamics at large times, except for numerical prefactors. /~. is 
constrained to be strictly positive and is a measure of the surrounding 
disorder; strong disorder is realized when #.  is small: in particular, when 
# . <  1, the density (4) diverges near the origin, allowing for a high 
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probability to find a nearly-broken link. On the other hand, infinite 
# values restore the pure (ordered) lattice; the limiting process is precisely 
the following: 

(/*.--,+oo, w~o ,# .w~=w. ) ~p . (w) - ,~ (w-w . )  (u=x,y) (s) 

The gamma density has a useful property which will be used here and 
there in the following: it is stable under the addition of independent 
variables; otherwise stated, if the independent random variables W~ and 
Wy are distributed according to Px and py, the sum W= W~ + Wy is also 
distributed according a gamma law: 

1 
p(W) = ~ W~. ~ W" le-  w/wc (# = #~ + #y) (6) 

It/*) 

having the parameter # simply equal to the sum #x + #y. 
The subsequent analysis essentially aims at providing the dynamical 

exponents for the two first moments of the particle position. We thus first 
write for completeness the so-called thermal averages: 

n ~  + o O  ~ ' n =  q -oo  

xr(t) y~(t)= ~ ~ nrm~Pnm(t ) (7) 
n = 0  m = 0  

which, for (r, s) = (1, 0) or (0, 1), describe the average position in the lattice 
plane for a given (quenched) disorder configuration. The Laplace trans- 
form of these latter moments will be denoted by the corresponding 
subscript and without overbarring in order to simplify the notations: 

Xr(Z ) ~ L[Xr(t)], ys(2) - L[yS(t)],  (xry,)(z) = L[xr(t)  yS(t)] (8) 

The mean square dispersions are thus obtained by forming the 
combinations: 

6xx(t) = ~z~(t) - x ~  2 

6x,(t) = x(t) y(t) - x(t) y(t) (9) 

(~,,(t) = y 2 ( t ) -  ~(~2 

For future use, we introduce the moment-generating function 
~(O, 0; z): 

n =  + o o  m = + o o  

(/)(~b,O;z)= 2 ~ ein%'mOpnm(Z ) (10) 
n = O  m = O  

822 /65 /3 -4 - I7  
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which, by the proper derivations at ~b = 0 and/or tp = 0, directly gives the 
Laplace transforms of all the moments defined in Eq. (7). 

All the previous averages are related to a given sampling of the lattice 
and are the primary quantities of physical interest when one looks for a 
detailed description of the dynamics in a given sample of a disordered 
material. Their full calculation is a rather formidable task. The problem can 
also be tackled in a different and easier way. In a first step, one only tries 
to obtain the dynamics for disorder-averaged moments ((xr(t)),  and so 
on), which are representative of the motion averaged over  an infinite 
ensemble of independent samples. In a second step, the sample-to-sample 
possible fluctuations are analyzed. We followed this procedure in refs. 6 and 
7 for d =  1. In the present two-dimensional analysis, we shall provide 
results for the disorder averages of the thermal expectation values. As 
explained below, some of these results allow one to draw some conclusions 
about the self-averaging properties of the thermal expectation value of the 
coordinate. 

As for the disorder-averaged mean square displacements, it is 
customary to distinguish the following two kinds: 

(i) The quenched mean square displacements 6uv,~(t)= (u(t) v ( t ) ) -  
(u(t) v(t)), which indeed coincide with the physical dispersions averaged 
over disorder, relevant for an ensemble of quenched lattices. 

(ii) The annealed mean square displacements 6uv, A(t)= (u(t) v(t)) -- 
(u( t ) ) (v ( t ) ) ,  which differ from the previous ones by the insertion of an 
additional disorder average in the last term. Clearly, this latter definition a 
priori discards specific sample-to-sample fluctuations, so that, in general, 
one expects 6uv.Q # 6~v,A. More precisely, one easily sees that the following 
inequality certainly holds for the diagonal elements: 

6o.,~(t)>~6.u,Q(~) (11) 

The connection between these two mean square displacements is in 
some way related to the self-averaging properties of x(t). Namely, when the 
quenched and annealed mean square displacements coincide, then x(t) is 
self-averaging, but the converse is not necessarily true. Indeed, the self- 
averaging property statement only relates to the dominant contribution 
to x(t), whereas the subdominant terms can by themselves build up the 
difference. This point is worth discussing in some detail. 

Let us assume for definiteness that, at large times, the two first 
moments of the coordinate x(t) for a given lattice are such that 

x( t )=aU+(( t ) ,  (x2( t ) )~At2~+Bt  p 
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where ~(t) is a noisy correction and where fl < 2c~. From this assumption, 
one readily obtains for the difference 

5xx.A(t) - 5xx, Q(t) = ( ( a  2 ) -- ( a )  2) t 2" + 2 ( ( a~ ( t ) )  -- ( a )  ( ~ ( t ) ) )  t ~ 

+ ( ~ 2 ( t ) )  - ( ~ ( t ) )  ~ 

When 6xx, A ~ 6xx, Q, this means that the first term vanishes (and that 
the variance of the noise ~ does increase slower than t2~), which in turn 
implies that the prefactor a in x(t)  displays no sample-to-sample fluctua- 
tions, i.e., x(?) is self-averaging. On the other hand, when this last quantity 
is self-averaging, this only implies that the dominant term in x(t)  is not 
random; thus, one is left with 

~,A(t)-~x~,Q(t) = ( ~ ( t ) ) -  (~(t)):  

which does not allow one to conclude that 6~,A ~6~ ,Q  when there is 
no other available information. In particular, for a standard regime 
( a =  1, f l=  1), a self-averaging x(t)  together with a common centered 
Gaussian noise ~(t) leads to 

6~,A(t) - 6x:,,Q(t) = const x t 

at large times. This last relation immediately shows that the quenched and 
annealed diffusion c o n s t a n t s  Dxx, A and Dxx, Q are not the same since (~xx, A 
and 6~,e  both asymptotically behave like t. It thus turns out that the coin- 
cidence between 6x~,A and 6x~,Q is basically related to the self-averaging 
property, not of x(t)  itself, but of the subdominant correction for a given 
sample. We shall demonstrate below that this coincidence holds in all 
dynamical phases for the two-dimensional directed walk, a fact which 
ensures that x(t)  is here self-averaging, as contrasted with the one-dimen- 
sional case. (6' 7) A discussion of the difference between DA and DQ can be 
found in refs. 4 and 10. 

3. A S Y M P T O T I C S  FOR THE VELOCITY 

The calculation of the disorder-averaged moments proceeds through 
the determination of the averaged generating function ((b(q~, ~,; z ) )  defined 
in Eq. (10). Any averaged probability (P.m(Z)) c a n  be found as follows. 
First, one notes that P,m can be expressed as 

Pnm(z)=Gnm(z)(Wx, n-lmPn 1m-I- Wy . . . .  iPnm-l), Poo(Z) = Goo(Z) 

(12) 
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where 

1 
Gnm(Z) = 

z-~- mx, nm-~- my, n m 

All the paths going from the site (0, 0) to the site (n, m) have n steps 
to the right and m steps upward. To every elementary jump is associated 
an "amplitude" A . . . .  given by 

A . . . .  ( Z ) -  mu'nm ~ W . . . .  Gnm(Z) 
z-~- Wx, nm.q- Wy, nm 

Thus, the probability P,,,,(z) is the sum the contributions of all these 
paths, each of them containing n factors Ax and m factors Ay. Due to the 
fact that the W's are uncorrelated and that they are all chosen with the 
same densities Pu, it is readily seen that the following equality holds: 

(Pnm(Z))=Cnn+m z +  Wx+ Wy z +  Wx+ Wy z +  Wx+ Wy 

-C,+,nR(z) (Ax(  )) (Ay(z))  m C~ p! (if-_p)! (13) 

where all the n, m indices have been dropped in the W's since they are 
unnecessary when such quantities appear within an average taken with the 
pu'S. The quantity R(z), which will play a central role in the following, is 
the Stieltjes transform of p(W) [see Eq. (6)], defined as 

R(z)=  z + W x + W y  = z + W  p(W) (14) 

By its very definition, the function R(z) has a cut extending over the whole 
real negative axis. Using Eq. (13), one can easily sum the series in Eq. (10), 
which yields 

(~(q~,~t; z) )  = R(z)[1 - eiO(Ax(z)) - ei~(Ay(Z))] 1 

Now, by calculating the two derivatives (i-18/8~)~=o=o 
(i 1 8/8~)~=~,=o, one gets the exact expressions 

(15) 

and 

( x l ( z ) )  = z  -2 ( A x ( z ) )  z -  2 ( A y ( z ) )  (16) 
R(z) ' ( y l ( z ) )  = R(z) 

The asymptotic dynamics can be found by looking at the behavior at 
small z of these quantities. Since the (A) ' s  are always finite, the asymptotic 
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regime critically depends on the behavior of R(z) near z = 0. In view of a 
systematic subsequent use of this property, we now quote the following 
expansion, easily derived from Eq. (6), in which Z denotes the reduced 
variable z/Wc and where # = #x + #y" 

R ( Z )  = W e  1 IF(1--]~) Z ~ - I  

Z 2 

1 Z + m  
# -  1 ( , u -  1 ) ( , u - 2 )  

+ (~, - 1 ) ( u -  2)(u - 3) + " 1 (17) 

When reordered with respect to the dominant powers, this expansion 
displays the usual fact that, when # increases from 0+, the actual relevance 
of the multivalued term Z ~ 1 step by step decreases every time that # 
crosses an integer value. From Eqs.(16) and (17), one now has 

( ~ : = ~ x + ~ y )  

# < 1 :  (x(t))~#xsinn-------~(Wc.t)~ (18a) 
7r~u 2 

# > 1 :  ( x ( t ) )  ~ #x # - 1  Wet (18b) 

and analogous expressions for (y( t ) )  with #p instead of #~. Generally 
speaking, 

(x(t) ) = Vx(#)(Wet) ~(~1 (19) 

where the exponents as well as the transport coefficient Vx(l~) are summed 
up in Table I. 

Table I. Exponents and Transport Coefficients for the Various 
Dynamical Regimes Found in the Text [see Eqs. (19) and (28)] 

fl V~(#) Dxx(# ) 

# 2/~ #xsinrc## r~# \(#xsinrc#)2~[F(#+l)]2# n# / (F(---~+~ ~} 

1 3--,u #x (#-- 1) 
# (3-#)(2-#)  

1 1 F # # #-2 #+2 -1 

O<p<l 

1<#<2 

#>2 
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Thus, in the plane (#x, #y), the frontier of the anomalous region for 
the velocity is the line #x + #y = 1. For any #, the disorder-averaged trajec- 
tory at large times tends toward the straight line with the slope #y/#x. The 
motion along this line is slower for # < 1 as compared to the normal 
regime. For # > 1, the drift motion is normal and displays the velocity 

, #y (# = #x + #y > 1 ) (20) 

As already quoted, the pure (nondisordered) limit is recovered 
achieving the limiting procedure defined in Eq. (5). Using Eqs. (18b) and 
(20), it is thus readily seen that, for the pure case, 

x(t) = Wxt, y(t) = Wyt 

as it should. 
It can be said that, for this two-dimensional motion, the anomalous 

regime is harder to encounter. Indeed, even if #y, for instance, is small, a 
finite velocity does exist provided that, at the same time, #x is large enough 
so that the sum /~x + #y is greater than one. Globally, the motions along 
the two directions are either both normal or both anomalous. 

The above results obviously generalize to the d-dimensional case. The 
fully-averaged displacement (x]~  (1 ~< i~< d) has the exact expression 

( X ] i ) ( z ) ) = 2  2 ( A i ( 2 ) )  
Rd(Z) 

where now 

Ai, nm(Z ) = Wi, nr n Gd, nm(Z), Gd, nm(Z) : 
Z"]-Ef=l  W ' t, nm 

ed(z)  = ( G d ( z ) )  

The anomalous region is now bounded by the hyperplane with 
equation 

d 
#---=E # i : 1  

i=1 

Thus, as the space dimension is increased, it is harder and harder to 
encounter an anomalous drift, due to the fact that the above condition is 
more and more difficult to fulfill with many positive #'s. The same is true 
for a one-dimensional directed-lattice with long-range jumps. (11) In a way, 
the size of the domain of existence of the anomalous phase tends to 
diminish when the dimensionality gets higher. 
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On the other hand, it is seen that, for a directed walk, anomalous 
phases for the velocity still exist in any space dimension; in that sense, the 
critical dimension is infinite. This is in sharp contrast with the results 
obtained for the both-way walk in RG methods with vanishing bias (4) or 
with bias in the presence of weak disorder as defined in ref. 9, establishing 
that d =  2 is the lower critical dimensionality above which no anomalous 
dynamical phase is to be expected. 

4. A S Y M P T O T I C S  FOR T H E  M E A N  S Q U A R E  D I S P L A C E M E N T  

The determination of the dynamics for the mean square displacements 
is inevitably much more involved, but plainly proceeds through standard 
Laplace complex analysis. Essentially, in order to find the exponents for the 
disorder-averaged (6~(t))  as given by Eq. (9), one has to achieve an 
asymptotic analysis of the convolution (Ul * vl ) (u, v = x, y) defined in the 
usual way: 

(F,  H)(z)=f  dZ'F(z ' )H(z-z ' )  
c 2in 

where C is a line in the z' plane which has the origin to the left and the 
fixed point z to the right. Obviously, if the quenched and annealed square 
displacements are a priori known to coincide, this difficult step is unne- 
cessary and it is just sufficient to compute additional derivatives of the 
generating function (45). One of our results is precisely the demonstration 
of this fact, thus establishing that the measure of the sample-to-sample 
fluctuations ~xx(t)= ( x ( t ) 2 ) - ( x ( t ) )  2 iS indeed subdominant at large 
times as compared to 6xx.a(t). 

At first sight, the determination of quadratic quantities such as 
(xl(z)xl(z ' ))  requires the knowledge of all the correlation functions 
(Pnm(Z) Pn,m,(Z')), which is rather hard to get. In order to achieve our 
goal, it is better, as we did in refs. 6 and 7, to use functional relations for 
the quantities ul(z) (u = x, y) by considering two different starting points; 
these relations are established for the present two-dimensional case in 
Appendix A, taking advantage of the order relation between successively 
visited sites in a directed walk. The subsequent procedure will be given 
below in some detail for (xl(z) Xl(Z')), and we will only quote the results 
for the two other averages (xl(z) y~(z')) and (yl(z) y~(z')). 

As compared to the one-dimensional case, the main difficulty here lies 
in the fact that there are many different correlated walks going from one 
point to another. The calculation of the above averages is thus not simply 
a rather straightforward extension of the d =  1 results, but on the contrary 
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requires first the knowledge of new quantities, as explained in Appendix B. 
The basic result obtained there is the following: 

1 70 + 4flo7/[~ - 2fl + (~2 _ 4 f l 2 ) 1 / 2 3  

(xl(z) xl(z'))=zz , ~o_(flo/fl)[~_(~2_4f12)l/23 (21) 

where ~0, a .... are various functions of (z, z') defined in Appendix B. 
As ordinarily in the inverse Laplace transform, the point is now to 

elucidate the small-z behavior of the integral over z' of expression (21), 
after the substitution z-~z', z'-+z-z'.  It turns out that the centered 
deviation 

axx(Z', z - z ' )=  ( X l ( Z ' ) x l ( z - z ' ) ) -  (xl(z ' ))(xl(z-z ' ))  (22) 

is a bit easier to analyze and it is sufficient to show whether the asymptotic 
behavior of this quantity is subdominant as compared to axx.A(t ) as 
previously defined. For future analysis, we first give the behavior of this 
latter quantity at large times. The Laplace transform of (x2(z) )  can be 
straightforwardly extracted from the generating function (q}). We find 

(x2 (z ) )  = z  2 (Ax(z)) ( A x ( z ) )  2 
g ( z ~  ~- 2z 3 g2(z) 

By using the expansion for R(z) [-see Eq. (17)] and by taking the 
appropriate inverse transforms, it is readily seen that the annealed mean 
square displacement 6x~,A(t) has the following asymptotic behaviors: 

# <  1: ~x~,A(t)= sin-~g, a 2 1 (Wct) 2" (23) 
~# J F(2/~ + 1) 

1 < # < 2 :  ~x~,A(t) = 2 (3 _ # ) ( 2 _  #) (Wct)3 " (24) 

2<#: 6xx'A(t) #x#- - l [  (-~ )1 # /.Z--2 /~+2 --1 Wct (25) 

The smalt-z analysis of the integral over z' of o-xx(z', z -  z') is rather 
tedious, all the n'iore since the denominator in Eq. (21) contains a multi- 
valued function (the square root) with a multivalued argument [-all the 
functions ~, fl .... involve the multivalued function R(z) defined in Eq. (14)]. 
We will only briefly sketch the full calculation, which indeed demonstrates 
that the convolution integral 

~c dz' Sxx(Z) = ~ ~xx(z', z - z') (26) 
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eventually provides, at large times, subdominant contributions as com- 
pared to ~xx, A(.t) as given by Eqs. (23)-(25). Recall that 2?xx(Z) is the 
Laplace transform of the sample-to-sample fluctuations of the thermal 
averaged coordinate, as measured by the mean square deviation ~xx(t), 
which precisely represents the difference between annealed and quenched 
diffusion coefficients. 

The method proceeds as follows. One first determines all the 
singularities in the integrand of (26) which go to zero as z goes to zero. We 
did not found poles having this property; the only relevant singularities 
thus turn out to be the branching points of the various multivalued func- 
tions involved in the above expression. This being established, the integra- 
tion contour is deformed so as to express the convolution integral in terms 
of real integrals corresponding to the two sides of the cuts. Then, a scaling 
of the integration variable allows one to obtain the z dependence of the 
integral in the small-z limit. A final Laplace inversion eventually provides 
the desired time dependence. Some more details are provided in the 
Appendix C for the less involved case, namely 1 < # < 2. 

As ordinarily, the various regimes arise because of the changing domi- 
nant behavior of the function R(z) near z = 0 as # increases, as displayed 
by Eq. (17). For clarity, let us successively look at the different cases. 

(a) 0 < # <  1. In this case, R(z) is dominated by the z ~ 1 multi- 
valued term. In addition, the square root in the denominator of axx has no 
branching point going to zero with z, since its argument has no zero having 
this property, and the same is true for the poles of the integrand. For the 
asymptotic analysis, it is thus possible to move the integration contour to 
the curve shown on the left-hand part of Fig. 2. 

It is subsequently seen that Nxx(Z) is dominated by a term 
cons txz  -(1+3"/2) (where the constant prefactor can be calculated), 

I m  I m  

o Z  

j Re Z Re 
" ) > - 

Contours used in the convolution integral (30) for the two cases p <  2 (left) and 
# > 2 (right). 

Fig. 2. 
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implying that the relevant deviation ~ ( t )  behaves a s  t 3~/2 at large times, 
which is indeed negligible as compared to 6xx, A(t). Thus, for # < 1, the 
two quenched and annealed dispersions coincide at large times and 
6~,A(t)  ".~ 6xx, Q(t) ~ t 2~ in the asymptotic regime. 

(b) 1 < # < 2. Now, R(z)  behaves as a constant near z =  0, but the 
subdominant z ~-~ multivalued term is still to be considered. As for the 
various singularities of the integrand, the situation is the same as above 
and it turns out that 5~x(t)~ t 5/2-~, which is again negligible as compared 
to 6~x,A(t), which, in this case, behaves like t 3-"  [see Eq. (24)]; thus, one 
again obtains 6 ~x,A( t ) ~ 6 ~x, o( t ) ~ t 3-"  at large times, 

(c) 2 < #. The main quantitative difference from the previous cases is 
that now the square root in the denominator of r [see Eqs. (21) and 
(22)] vanishes when z goes to zero. In terms of reduced variables Z and 
Z',  the relevant zero Z ;  is given by 

Z'o= - - 1  Z 1 / 2  ~ - ~ - ~  - " '"  

The relevant contour for the asymptotic analysis can thus be chosen 
as shown in the right-hand part of Fig. 2. The dominant term for S ~  yields 
~ x ~ ( t ) ~ t  1/2, which again is negligible as compared to t [-see Eq. (25)]. 
Thus, f i ~ x , a ( t ) ~ a ~ , o ( t ) ~ t  for # > 2 .  

We are now in the position to state that, for any #, the quenched and 
annealed mean square displacements coincide in the asymptotic regime for 
any/~: 

Thus, by setting 

6xx, e ~  6~,A, t--+ +0% V# (27) 

6~,Q(t)  = 2D~(#)(Wet)  ~')  (28) 

and using Eqs. (23)-(25), one can collect the results giving the final 
behavior of 6xx, o(t), displayed in the last column of Table I. The dominant 
exponent for 6xx, A(t), fl(#), and the dominant exponent 7(#) for the 
difference 6xx, A( t ) - - fxx ,  Q(t) are plotted in Fig. 3 as functions of #; it is 
interesting to note that, as far as a normal drift occurs (/z > 1), the relative 
importance of disorder fluctuations behaves like t 1/2. The # dependence of 
Dxx(l~) is illustrated in Fig. 4. 

The results for 6yy, Q(t) are found just by exchanging #x and/Zy in the 
above expressions. As for the crossed term 6xy, Q(t), one has to replace 
and 70 by new expressions ~70 and ~7 in the linear system (B2)-(B3); this 
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Fig. 3. Dominant  exponents for 5xx, Q(t) (fl, dashed line) and for the difference 
6~,A(t)--fixx, Q(t) (7, solid line). 

does not affect in any way the conclusions about the subdominant charac- 
ter of the difference between 5xy, Q(t ) and 5xy, a(t ). The crossed correlation 
g)xy, Q(t) is thus easily explicitly found from the averaged generating 
function (q5 }. We find 

#<1: 5xyQ(t)=~X~gzy[Sin~#]212[F(#+l)]2 ] 
' # k ~z# A F ( 2 # + l )  1 (Wet) z~ (29) 

1 < # < 2 :  6xy, e(t)=2 #x#y ( # - 1 )  3 ( W c l )  3 ~ (30) 
#~ (3 - # ) ( 2 -  #) 

2 < #: Gy, Q(t) = 2 #x#, # - 1  #2 # - 2  W,,t (31) 

g 

the coefficient Axx(# ) 

3.0 t Axx(l-t) 

! 

2.0 i 
i 

1.0 

0.0 ~ ,  

as a function of # 
0.0 0.50 1.0 1.5 2.0 

Fig. 4. Variations of defined as 

A~(;) = (#/#A ~ Dxd;). 
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Note that, by forming the quantity 

S =  <X2> q- <y2> q_ 2<~yy> - < 2 >  2 -  <..~>2_ 2<~><3~> 

one recovers the result for the Bethe lattice with the coordinance 
Z =  d+  1 = 3(12); in this last paper, it was also shown that the quenched 
and the annealed quantities indeed asymptotically coincide for a Bethe 
lattice. 

It is nearly evident that the identity between the quenched and 
annealed dispersions just demonstrated for d=  2 also holds true for higher 
dimension. The various (normal or anomalous) regimes obtained in this 
section for d = 2 thus generalize to any d in the same way as is done at the 
end of Section 3 for the first moments of the position. We thus reach the 
conclusion that anomalous phases still exist for a directed walk in any 
spatial dimension d and for strong disorder, the strength of it being 
measured by the parameter #. 

5. CONCLUSIONS 

The dynamical exponents for the coordinate and for the mean square 
displacement have been calculated for a two-dimensional random-random 
directed walk and turn out to be the same as for the one-dimensional 
model, with a proper redefinition of the parameter #. For the velocity as 
well as for the mean square deviations, the results can be easily extended 
to an arbitrary dimension d and it is seen that an anomalous region still 
exists for any d, although its size in the parameter space keeps diminishing 
as the space dimension increases. In other words, anomalous phases are 
always present, provided the surrounding disorder is strong enough. 

Our results about the dynamical exponents display the fact that the 
present model seems to capture only a part of the two-dimensional general 
walk. On one hand, the self-averaging properties gained by an increase of 
space dimensionality are already present in the directed walk, since, as 
shown above, they quenched and annealed diffusion coefficients indeed coin- 
cide in the asymptotic regime, normal or anomalous. On the other hand, 
anomalous phases always exist in the directed model; on the contrary, RG 
methods lead to the conclusion that, for the general walk with vanishing 
bias or with a finite bias and weak local random perturbations, no 
anomalous phase is expected in a space with a dimension greater than 2. 
The status of the equivalence on large time and space scales between the 
directed and the both-way walks, which is believed to be true for d=  1, is 
thus unclear for higher dimension. This point deserves further study. 
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APPENDIX  A 

In order to establish the functional relation for the coordinate, we first 
note that, using the master equation (3), we can rewrite the velocity along 
the x axis, zxl(z), as 

+ o o  

zxl(z)= ~ Wx, nmP.m(Z) ( a l )  
n , m = O  

We now need a temporarily slightly more complicated notation. Let 
(Pq )  Pnm (z) denote the Laplace transform of the probability to be at (n, m) 

when the starting point was the site located at (p, q). Note that the (Pq) P.m (z) 
satisfy Eq. (12) with (Pq) Ppq (z)= Gpq(Z). The corresponding velocity along x 
is then given by 

+ c o  

zx?q (z) E ('q) = W.,.mP.m (Z) (A2) 
n , m = 0  

With (p, q) = (0, 0), this last series can be decomposed as follows: 
+ o o  

Wx, ooP(o~176 + Z Wx, noP.o (z) 
r t - - |  

+ o ~  + o 0  +CO 

+ Z Wx, omP(oOOm)(Z) + ~ ~ Wx,.mP}~176 (A3) 
m - - 1  n - - 1  m = l  

Clearly one has 
n ' = / /  

n(oo)/ Wx,.OrnO ~z)= l-[ Wx, n,oGn,o(Z ) = Wx, ooGoo(Z ) Wx, noP.o(10)(Z) 
n ' = O  

Thus, the second and third terms in Eq. (A2) can be written respectively as 

+ o o  + o o  

;<,ooOoo(Z) Wx, noP.o (z) and Wy, ooGoo(Z) ~ Wx, omPom (Z) 
n - - 1  m = l  

We now transform the last term in Eq. (A3) by noting that P,(,CmO) is 
itself the sum over many paths, which can be divided into two classes: 
(i) those which all cross the (1, 0) site, and (ii) those which all cross the 
(0, 1) site. 

The paths of the first class give terms which all have the common 
factor Wx, ooGoo. In the same way, all the terms arising from the second 
class have the common factor Wy.ooGoo. Once the factorization is achieved, 
one can write 

(oo) _ Pnm (z ) -  Wx, ooGoo(Z) ~ + Wy, ooGoo(Z) 
all  p a t h s  c ro s s ing  ( 1 , 0 )  a l l  p a t h s  c r o s s i ng  (0, 1 ) 
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The two last summations are nothing else than Pnm(Z)IO and Pnm(Z),~ 
respectively. Finally, by collecting terms, we find 

zx~~176 = Wx, ooGoo(Z) + zWx, ooGoo(Z) x~~ + zWy, ooGoo(Z) x~~ (a4) 

This relation can be generalized as 

Zx~"m)(z) = W . . . .  G.m(Z) + zWx,.mG.m(Z) ~1~'("+ lm~ 
( n m  + +zWy,.mG.m(Z)X, X)(z) (A5) 

In the same way, one finds 

+ zWx nmG.m(Z) ,,~m+ 1.)(Z ) (A6) , Y l  

These functional relations obviously reduce to the one given in refs. 6 
and 7 for the one-dimensional case, and in ref. 12 for the Bethe lattice. In 
addition, they can also be used to derive the disorder average given in 
Eq. (16) of the present paper. 

APPENDIX  B 

Let us now define the following correlation functions for the velocities 
along the x axis for the two different starting points (n, 0) and (0, n): 

Cn(z, z')=zz'(x]"~ x]~ (n >~0) (B1) 

We are essentially interested in finding Co(z, z'), but, as clearly seen 
from the functional relations established in Appendix A, each Cn is coupled 
with Cn + 1. The coupled equations are set up by first using twice the func- 
tional relation (A5) for x]"~ and for x~~ The two corresponding 
relations are then multiplied term by term and the disorder average taken. 
Using the translational symmetry for the averages, we obtain the following 
linear system for the Cn : 

~ o ( Z , z ' ) C o ( z , z ' ) - ~ o ( Z , Z ' ) [ C l ( z , z ' ) + C j ( z ' , z ) l = ~ o ( Z , Z ' )  (B2) 

-/3(z, z') C. l(Z, z') + ~(z, z') C.(z,  z') - B(z, z') C.+ j(z, z') 

=7(z, z') (n~>l) (B3) 

In the last equations, the various coefficients are equal to 

~o(Z, z') = 1 - ( w ~ G '  > - <  W~GG' > 

/~o(Z, z') = (WxWyGG')  
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7o(Z, z ' ) :  < w~aa'> + < w x w a a ' >  r [< wxa'> <wxa>] 
z'R' ~ - 7 2 - 3  

~(z, ~'): I - < w~>< w~6'>- < w~a>< W,G'> 

/~(z, ~') : < w~>< vU~'> 

[<W~G 
'> 

7(z 'z ' ) :<WxG><W~G'>+<WxG><WG'> z'R' + - -  
<WxG>.] 

zR j 

where, for short, unprimed symbols denote functions of the variable z, 
primed symbols functions of z' [ G =  G(z), G'= G(z'), and so on]. All the 
above averages can be easily computed with the gamma distributions Pu as 
given in Eq. (4). Thus 

<A.(z)> - < W.G(z) > : g_2" R(z) 

<Wa.G(z) O(z')> ; ~ u ( # . + l ) F ( z , z , )  
u(u+l) 

( Wx WyG(z) G(z') > - ~xl~ Nz,  z') 

< Wu WG(z) G(z') > : #" F(z, z') 

F(z, z') = 1 
z2R(z) - z '2R(z ') 

Z - - Z  t 

It is seen that the above linear system (B2)-(B3) only admits the 
nontrivial symmetric solution 

C.(z, z') = C.(z' ,  z) 

Indeed, the antisymmetric solution is readily seen to satisfy another linear 
homogeneous system, the determinant of which is nonvanishing identically. 

The above infinite linear system (B2)-(B3) looks rather innocent, but 
must be carefully solved. This can be done at least in two ways: 

(i) E i the r  it is first truncated to a finite N-dimensional system; then 
the limit N ~ + oo of the corresponding solution is taken. 

(ii) Or, as one is essentially interested in finding Co(z,z'), one 
expresses C,,(z, z') as a function of Co(z, z') and one imposes on the former 
quantity that it not be diverging in the limit n ~ +oo. This condition 
provides an additional missing relation, allowing for a full complete 
solution. 
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Either method gives the same answer, namely 

1 Yo + 4/~07/[e - 2/~ + (~2 _ 4//2)1/2] 
(xl(z)xl(z'))=zz--; ~0_ (/~0/~)[c~ _ (~2 _ 4~2)1/21 (B4) 

where, for short, the (z, z') dependence in the various functions has been 
omitted. The square-root function in the above expression is unam- 
biguously defined by continuity from its real positive values. 

As a by-product, it can be seen that the correlation function C,(z, z') 
has the limit 

lim C,(z, Z' )= ( X I ( Z ) ) ( X l ( Z ' ) )  
n~ +oo 

This means that the correlations between the velocities corresponding to 
two different starting points indeed vanish when these are infinitely apart, 
a pleasant result on physical grounds. In addition, it is readily seen that the 
expression (B4) correctly reproduces the one-dimensional result, as it 
should, as well as the pure d = 2 case. 

APPENDIX  C 

We now will give some more details on the asymptotic analysis proce- 
dure used in Section 4, by examining the simplest case, namely I </~ < 2. 
For simplicity, we call N and D the numerator and the denominator of the 
expression for ~x(z,  z - z ' )  [see Eq. (22)] which results from the use of 
Eqs. (16) and (21), keeping aside the prefactor 1/[z ' (z-z ' )] .  By moving 
the contour, one has 

x(z + x) -d-5_ + L (cl) 

In this equation, N_+ and D + denote the two values of the multivalued 
corresponding function, just above or just below the cut extending on the 
negative real axis. I[is the integral along a small circle with radius ~ around 
the origin. Expression (B1) can be rewritten as 

c 2ire z'(z - z') D - - rE x(z--+ x) Im ~ + ~ _= s + Is (C2) 

The most divergent term in N is ( Z =  z/Wc) 

{[' 1 _ 2 1 - F ( 1  - / ~ )  x ~'- le-it~ 
2 x + Z  ~ 1 

- I  l~ l+F(1-1~) (Z+x)" -~1-1}  
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By scaling the integrat ion variable x with Z,  i.e., by put t ing x = Z X ,  

this term becomes 

-- ( l ~ - - l ) 2 J U ( 1 - - 1 ~ ) ~ X - - ~ [ X U - ' e - i ~ + ( l + X ) u - 1  ] 

With the same arguments ,  the mos t  impor tan t  term in the 
denomina to r  D is seen to be 

/t 
D - -  

# + 1  - - - [ 1 -  --S-J [ 13 
By collecting terms and taking the imaginary  part ,  it is seen that  the 

integral ~ is given by  

_ [ ~ ] 2  # +  1 F ( 1 - g ) ( ~ - 1 ) 5 / 2  sin g~ 
,I/ [1 - -  (ZJ#//~) 2 ] 1/2 

fo +~ d X  X l, 2 Z.U 7/2 

(C3) 

The  last integral is equal  to ( 1 - 2 2 - ~ ) / s i n # m  The /~ term is easily 
shown to be, in the limit e ~ 0, 

[ ~ ] 2 / ~  + 1 F (  1 - # ) ( # - 1 )  s/a 

[ 1  - 1/2 
Z,U - -  7/2 (C4) 

By taking Eqs. (C3) and (C4) into account,  one obtains  
~xx ~ const  x t (s/2)-" as claimed in the main  text. 
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